
THE USE OF DATA TYPE INFORMATION IN AN INTERACTIVE DATABASE ENV--4TC(U)

NOV 80 P BUNEMAN. I WINSTON N000175-C-0462

UNCLASSIFIED 8
0-11-08NL

INI W 1112.5

14- 132-

138

I"-

I II"° 1.6
111'-2 I"---"111 1 1

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREALJ OF STANDAROS l96i A

r"LFORT K CLINTATLIM, PA~GE 4l F CC, I ING 1 0,0
ff-h, i9AfL-, o GOVI ACCLL-'.IDN NO 3 #hECjPIL41T' CAI ALOG. wheobLR

r r
S. TqPE OF REPORT & PERIOD COVERED

meTA--w OF WA ;Y t echnical/ 4/80-4/8~1
-1 _E PERFORMING OnG. REPORT NUMBER

AUTMO~~ . / . ~ o RANT NUMBER(.

.PERFORMING ORGANIZATION NAME AND ADDRESS 10. PRtOGRAM ELEMENT. PROJECT. TASK
DepartnenA oDeijnAREA A BORK UNIT NUMBERS

University of Pennsylvania, Phila., PA .1910 Task NRO49-272
II. CONTROLLING OFFICE NAME AND ADDRESS

Ofice -of Naval
Or~-h PA CSN v

:X.AR46-~d -idqJ It. SECURITY CLASS. (Of this VePeeS

!unlassified

IS. DISTRIOUT10ON STIMPEMIWON

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEM4ENT (of the 01beu,.ct onterediit Block 20. if dillfoerome R.eefJWO

Distribution unlimited

IS9. SUPPLEMtNTARY NOTES k

13. KILT WORDS (Conihwe on rov.,.. side of fteeee8auv and fdontfly & bloc -Iibe.)

Data type information, interactive database envircrment; data moidels;prograxmming languages, databases and artificial intelligence; databaseS ~ ~~~schema, relational, end-users, designers, administrators, apictciprogramuers,
20. ABSTRACT (CmtIhw. on rwvere old* of n@eeoo an* Idenlotr 63P Week& nin.e)-

Despite the enornious advances that have1 been made in 'the. specificatki ofdata types and data models in the fields of progrwmg languages, databasL~sand artificial intelligence; there remaini a nlmter of problemw in atteipting(td unify the varios aproaches to the formal description of data. The nLt(or pons fve ftoepeople -designers, adminisjrators, applicati-A ~prvgramers; and end-users - whose main interest is with-ir k N i" X
DD mm j 1473 tot-roomow mv 11111 is OSOLIET6

U / U 0 1 0 - S t . M I -S & C U R I T y C L & s a F uC I j l T O F * T ~jlt P A G E r ae t

__ 8 1230-0061

20. (cont'd)

particular, we hope to display special concern for the tools
provided for the end-user, who should be the final beneficiary of whatever
advances are made.

............. ...- ,v,
II--

DVD,-'

arm=

The Use of Data Type Information in an

Interactive Database Environment

Peter Buneman

Ira Winston
/I

Department of Computer and Information Science

University of Pennsylvania, Pa 19104

Despite the enormous advances that have been made in the

specification of data types and data models in the fields of

programming languages, databases and artificial intelligence;

there remain a number of problems in attempting to unify the

various approaches to the formal description of data. The purpose

of this brief paper is to examine these problems from the point (or

points) of view of those people -- designers, administrators,

applications programmers, and end-users -- whose main interest is

with databases. In particular, we hope to display special concern

for the tools provided for the end-user, who should be the final

4 beneficiary of whatever advances are made.

In order to pin down some of these problems, it is worthwhile to

attempt a definition of certain terms used in databases:

This work was partly supported by the Office of Naval Research

under contract N00014-75-C-0462, and by a grant from the Digital

Equipment Corporation.

Page 2

1. A data model (or database management system if one is

describing an implementation) is a set of parameterized or

"generic" data types.

2. A database schema is a set of data types that result from

instantiating the generic types of the data model to

produce a set of data types that describe the data to be

stored.

3. A database is an instantiation of those types defined by a

schema.

For example, the terms "domain" and "relation" refer to the generic

types that define the relational model. To create a specific

relational schema involves instantiating domains: EMP#, NAME, SAL

and relations, EMPLOYEE(EMP#, NAME, SAL...). A specific relational

database is produced in turn by instantiating, for example the

EMPLOYEE relation. There are of course, some flaws with these

definitions; and it will be noticed that we have really punted on

the problem of providing a definition of database terms to those

concerned with the formalization of type definitions. However, the

correspondence is useful in that it will allow us to draw some

important contrasts between the use of databases and other forms of

programming.

In a conventional programming task it is usually the case that one

person, or a small group of people, takes responsibility for the

design and implementation of a program. Each person involved would

have a more or less complete understanding of the three levels of

type definition described above. The situation is very different

Page 3

in a database environment. The people that implement the generic

types (the database management system implementors) usually have no

contact with the those who instantiate these to produce the

specific types (the database designers) and these in turn have

little to do with the end-users and applications programmers. This

is a traditional distinction in roles; and it is to be hoped that,

with increasingly powerful software, some of the distinctions will

die out. It is unlikely, though, that an end user would normally

want to implement a database management system. What we shall ask

is what kinds of programming tools are appropriate for these

programming environments whose differences are characterized by the

use of type information.

Of the highest level, that of specifying generic types, we shall

have little to say except to remark that it is not clear that the

generic type facilities provided by the recent "higher order"

programming languages are powerful enough to describe accurately

the abstract structures provided by a DBMS. The reader interested

in this problem may care to try specifying in ADA [11, say, the

generic type RELATION as it is used in Pascal-R [21. Apart from

the obvious syntactic difficulties, there is a semantic problem in

adequately specifying how RELATION is to be-parameterized --

presumably by a set of domains. Another problem lies in the degree

to which type information should be available at "run-time": we

encountered this in trying 13] to embed Codasyl 141 structures in

ADA as generic types.

Page 4

At the other end of our scale lie the 'end-users" and

"applications-programmers" the distinction between these two

classes often results more from the programming tools they are

given than what they accomplish. Someone who generates a report

through the use of a simple query language is an end user while

someone who generates the same report with a conventional

programming language is an applications programmer. We feel very

strongly that the fact that the end-user cannot often perform some

simple and useful computations, such as adding two numbers, is a

testimony to the inadequacy of his query language rather than to

the intelligence of the applications programmer. Ideally, an

end-user should have at his disposal both the benefits of a simple

query language and a high-level programming language.

A number of programming systems have recently appeared that are

either extensions of an existing languages (21 that include data

types appropriate to the implementation of a specific data model,

or are new programming languages with an integral data management

system [5,6]. These constitute an enormous advance over what has

been previously available for programmers, which often consisted

low-level access to some DBMS without the benefit of any structured

program control. However, there are certain respects in which a

data model cannot sit comfortably in any conventional programming

language. The reason is that databases contain a high degree of

regularity and may be conveniently manipulated by a set of *bulk"

operators. The relational calculus (7) is a prime example of such

operators, but they are also implicit in some of the non-relational

query languages and are, of course, well known in the

Page 5

(unconventional) languages LISP and APL. To take an example of the

incompatibilities that may arise when a relational database system

is embedded in a conventional programming language, consider the

problem of adding two columns of a relation row by row to produce a

new relation with one fewer columns. This cannot be done within

the relational calculus (although some query languages allow it),

and a programmer using a relational database embedded in a

programming language may find that an iterative program with

low-level data access is required to perform this operation while

an apparently more complex operation (such as a relational join) is

available as a primitive operator.

An alternative approach is to take a set of database operators and

to extend these to a full programming language. We have been

experimenting with such a system over the past year or so that is

based upon the Functional Query Language (FQL) (81. It exploits a

functional model of data: a database consists of a set of

extensionally defined functions and contains a small set of

functionals for operating either on data or user defined functions.

Examples of these operators are extension, which applies a given

function to a set or sequence. This is the familiar MAPCAR of LISP

and is implicit in many APL functions. It also has close ties with

the relational projection operator. Another example is

restriction, which filters out the members of a sequence or set

that do not satisfy a predicate; it has a direct counterpart in

the relational calculus. Our purpose is not to go into the details

of the language, but to indicate some of the advantages that the

surrounding system may have for a wide variety of users.

- - -- - - . - . - -

Page 6

1. It is an interactive system that contains an editor and

interpreter. The-user does not constantly have to switch

between programs to debug his definitions.

2. It exploits the idea of a workspace similar to that of

APL. Contained in a workspace is both a database and a

set of defined functions. In one sense it solves the

problem of "persistent data" by making both programs and

data equally persistent.

3. Data may be incrementally defined: there is no predefined

schema. It is however possible to load a Codasyl database

for the purpose of query.

As examples of the way definitions are typed in this system, the

following are possible definition and declaration headings:

Def AVERAGE: *NUM -> NUM

(The generic operator * stands for

"sequence of")

Def AVE SAL: *EMPLOYEE -> NUM =

Def MANAGES: [EMPLOYEE, EMPLOYEE)

-> BOOLEAN .

Def CADR: *?X -> ?X -

(?X is a type parameter)

-- Jn

pop""-

Page 7

Def PAIRS: [*?X, ?Y] -> *[?X,?Y] .

Def SORT: [[?X, ?X]->BOOL, *?X]

*] -> *?X =

Dcl NEWGRADE: EMPLOYEE -> CHAR =

The last of these shows the declaration of an extensionally defined

function (i.e. data). This statement calls for the evaluation of

its body and creates an updateable function. It is through

declarations like this that the user may build his own database or

increment an existing database to which he has access. This is a

part of the system that we are currently developing.

These examples are similar to the typing facilities available in a

4 number of applicative languages. The reason they are necessary is

not for efficiency: the cost of run-time checking is insignificant

when compared to the cost of i/o in conventional database systems!

I' The reason is that certain database management systems demand a

form of "compilation". The token 'EMPLOYEE' cannot be directly

used to access a class of records; instead it must first be

converted into some internal referent. It is sometimes impossible

and frequently inefficient to perform this conversion at run-time.

It should also be noted that these examples could also have beenrI
typed automatically; and we hope to incorporate an algorithm such

as that suggested in [9) in the near future. Explicitly defining a

type is, however, often a great help in formulating a complicated

function definition.

Page 8

A serious problem remains. At present a form of compilation takes

place whenever a top-level expression is evaluated. All the

definitions relevant to the evaluation of the expression are

gathered together, their types checked and the necessary

conversions performed. Thus the user is only made aware of certain

type conflicts at "run-time". We believe that a better system

would comment or grumble about a user's definitions as he types

them in. But it is not easy to see how such a system could type a

definition when many of the referents in that definition are

undefined; moreover there are a number of problems with automatic

typing algorithms when applied to the definitions of higher order

functionals (such as extension). In general, there appear to be

severe difficulties in obtaining the benefits of an interactive

programming system and one which properly exploits a rich set of

type constructs. A solution to these problems would be of general

benefit, but would especially help in the design of interactive

database interfaces.

r

Page 9

ah, J. et al, "Rationale for the Design of ADA," ACM

AN notices, June 1979.

dt, J., "Some High Level Language Constructs for Data

pe Relation," ACM TODS, 2, 3, pp. 247-261, September

ian, 0. P., Root, D. J., and Menten L., "A CODASYL

face for PASCAL and ADA," Moore School Report,

rsity of Pennsylvania, August 1980.

'YL Data Base Task Group, April 1971 Report.

rman, A. et al, "Report on the Programming Language

4," TR-34, U. C., San Francisco, 1978.

r L., and Shoens K., "Data Abstraction, Views and

:es in RIGEL," Proceedings ACM SIGMOD, May 1979.

E. F., "A Relational Model for Large Shared Data

3," Comm. ACM, Vol. 13, No. 6, pp. 377-387, June 1970.

nan, 0. P., and Frankel, R. E., "FQL -- A Functional

Language," Proceedings ACM SIGMOD, May 1979.

r, R. "A Theory of Type Polymorphism in

:amming," J. Computer and System Sciences, Vol 17,

375, 1978.

